*
$$j^{k}: C^{\infty}(M,N) \longrightarrow C^{\infty}(M, J^{k}(M,N)), f \mapsto j^{k}f, is continuous:$$

Let
$$U \subset J^{\ell}(M, J^{k}(M, N))$$
 open. Then $M(U) = \{g \mid j^{\ell}g(M) \subset U \}$
is open in $C^{\infty}(M, J^{k}(M, N))$ — need to show that $(j^{\ell})^{-\ell}(M(U))$
is open in $C^{\infty}(M, N)$:

Let
$$\alpha_{k,e} : \mathcal{J}^{k+\ell}(M,N) \to \mathcal{J}^{\ell}(M,\mathcal{J}^{k}(M,N))$$
 defined by
 $lf \ \sigma \in \mathcal{J}^{k+\ell}(M,N)_{x,y}$ represented by $f: M \to N$, then
 $\alpha_{k,e}(\sigma) := j^{\ell}(j^{k}f)(x)$.

This is well-defined and smooth (Thm II.2.3). Thus, $\alpha_{u,k} \stackrel{-1}{} (U)$ is open. Moreover, $(j^{u})^{-1}(M(u)) = M(\alpha_{u,k}^{-1}(u))$, because for every $f \in C^{\infty}(M,N)$ $\alpha_{k,k} \in (j^{u,k}f) = j^{k}(j^{k}f)$ as maps $M \rightarrow J^{k}(J^{k}(M,N))$.

Set
$$\varepsilon = \frac{1}{2} \min \left\{ d_{\varepsilon} \left(\sup_{P} P_{i}, \mathbb{R}^{n} - \Psi(V_{i}) \right), d_{\varepsilon} \left(\Psi(t(S_{i})), P'(t_{i}) \right) \right\}$$

 $P := \left\{ p \in P' \mid \| p(P(x)) \| < \varepsilon \quad \forall x \in \text{supp } p \right\} \text{ is then an }$
open ubbood of 0 in P'.
We show that around (p, x) such that $F(p, x) \in \overline{S}$; the $M = P + \frac{1}{2} M = \frac{1$

$$F(p,x) \in \overline{S_i} \implies x \in S(\overline{S_i}) \text{ and } G_p(x) \in t(S_i)$$
Then $S := d(\Psi(f(x)), \Psi(G_p(x))) < \varepsilon$ because $\Psi(G_p(x)) = p(\Psi(x)) \cdot \psi(\Psi(f(x))) \cdot p(\Psi(x)) + \Psi(f(x))$.

Therefore

$$\begin{aligned} \delta &= \| p(\varphi(x_{1}) \cdot p(\varphi(f(x_{1}))) \cdot p(\varphi(x_{2})) \|_{\mathbb{R}^{n}} & \int \leq \| p(\varphi(x_{1})) \| < \varepsilon \\ &= 0 \quad \text{if } | \varphi(x_{1}) \cdot p(\varphi(x_{2})) | \\ &= 0 \quad \text{if } | \varphi(x_{1}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi(x_{2}) \cdot \varphi(x_{2}) | \\ &= 0 \quad \text{if } | \varphi$$

Furthermore,
$$G_p(x') = \Psi'(p \cdot \Psi + \Psi \circ f)(x')$$
 for all X' in a ubh. of X.

Thus,
$$F: P \times M \to J^{k}(M,N)$$
 is a diffeom. around
 $(p_{i}x):$ for $\sigma \in J^{k}(M,N)$ near $F(p_{i}x)$ let $x' = s(\sigma)$
and p' the unique (!) polynomial of degree $\leq k$
with $\sigma = j^{k} (\Psi(p' \circ \Psi + \Psi \circ f))(x')$. The
map $\sigma \mapsto (p',x')$ is smooth and inverse to F .

Me